紫气C
返回首页 | 学习强国
关键字: | 时间:2025-11-06 02:23 | 人浏览

【答案】已知函数f(x)=sin(2x+π/6),若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,则a的值问下对称轴x=a怎么得出?为什么怎么代换都得不出对称轴x=a,只得到周期=2a,怎么换?

问题描述:

已知函数f(x)=sin(2x+π/6),若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,则a的值
问下对称轴x=a怎么得出?
为什么怎么代换都得不出对称轴x=a,只得到周期=2a,怎么换?

最佳答案:

f(x+a)=f(x-a)恒成立,则x=a为函数f(x)=sin(2x+π/6)的图象的对称轴,
所以,sin(2a+π/6)=1或 -1,得2a+π/6=kπ+π/2,即a=kπ/2+π/6,k为整数,
由a∈(0,π),得a=π/6或2π/3.

答案有错

上一篇:已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x-sinx,若不等式f(-4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是.

下一篇:直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点.

紫气C手机端XML联系我