如图,在矩形ABCD中,点E在边AD上,将此矩形沿CE折叠,点D落在点F处,连接BF,B、F、E三点恰好在一直线上.
(1)求证:△BEC为等腰三角形;(2)若AB=2,∠ABE=45°,求矩形ABCD的面积.
【答案】(1)证明见解析;(2)4.
【解析】(1)由矩形ABCD可得∠DEC=∠BCE,由折叠知∠DEC=∠FEC,从而可得 ∠FEC=∠BCE,从而可推得结论;
(2)利用勾股定理可求得BE的长,由(1)可知BC=BE,利用矩形的面积公式即可得.
试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,
由折叠知∠DEC=∠FEC,∴∠FEC=∠BCE,
又∵B、F、E三点在一直线上,∴∠BEC=∠BCE,
∴BC=BE,即△BEC为等腰三角形;
(2)∵四边形ABCD是矩形,∴∠A=90°,
又∵AB=2,∠ABE=45°,∴BE=2,
又∵BC=BE,∴BC=2,
∴矩形ABCD的面积为4.