问题描述:
已知| 1 |
| x |
| 1 |
| y |
最佳答案:
| 1 |
| x |
| 1 |
| y |
设x+y+z=k,则z=k-x-y,
代入x2+y2+z2=2xyz=x2+y2+(k-x-y)2=2xy(k-x-y)=2(x+y)[k-(x+y)],(由①)
2(x+y)2-2xy+k2-2k(x+y)=2k(x+y)-2(x+y)2,
4(x+y)2-(4k+2)(x+y)+k2=0,
| △ |
| 4 |
x+y=(x+y)(
| 1 |
| x |
| 1 |
| y |
∴x+y=
(2k+1)+
| ||
| 4 |
2k+1+
| 4k+1 |
| 4k+1 |
化为k≥=7.5,或k<7.5且4k2-60k+225≤4k+1,
4k2-64k+224≤0,
k2-16k+56≤0,
∴k≥8-2
| 2 |
∴x+y+z的最小值是8-2
| 2 |
故答案为:8-2
| 2 |