紫气C
返回首页 | 学习强国
关键字: | 时间:2025-11-06 02:16 | 人浏览

【答案】求极限的几种类型与方法

初级阶段:四则运算法,连续函数用代入法,分子分母同除最高次项法,分离非零定式因式法,分子有理化法,分子分母约去致零因式法。晋级阶段:等价无穷小替换因式法,不定式的罗比达法则,幂指函数配底或取对数。高级阶段:泰勒公式展开法,收敛级数通项趋于0,构造定积分法,应用积分和微分中值定理法。

求极限的方法

(1)分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;

(2)无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;

(3)运用两个特别极限;

(4)运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小。比无穷小,分子分母还必须是连续可导函数。

(5)用Mclaurin(麦克劳琳)级数展开,而国内普遍译为Taylor(泰勒)展开。

(6)等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。

(7)夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。

(8)特殊情况下,化为积分计算。

答案有错

上一篇:三角形的高怎么求

下一篇:余子式和代数余子式有什么区别

紫气C手机端XML联系我